Lecture2Go-Wartungsarbeiten am 30.9.2021

Aufgrund dringender Wartungsarbeiten steht Lecture2Go leider am 30.09.2021 von 9:00 bis 21:00 Uhr nur eingeschränkt zur Verfügung. Mit zeitweiligen Ausfällen ist zu rechnen, Logins und Uploads sind während der Wartungsarbeiten nicht möglich. Wir versuchen, den tatsächlichen Ausfall in diesem Zeitraum so kurz wie möglich zu halten, und bitten die Unterbrechung zu entschuldigen.

Ihr Lecture2Go-Team im RRZ

Video Catalog

Views: 2152

Machine Learning of Motor Skills for Robotics

Jan Peters
10.07.2014
Informatisches Kolloquium

Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by visual stimuli from higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this talk, we investigate a general framework suitable for learning motor skills in robotics including both manipulation of static and dynamic objects that are perceived using vision. The resulting approach relies on a representation of motor skills by parameterized motor primitive policies acting as building blocks of movement generation, and a learned task execution module that transforms these movements into motor commands. We discuss task-appropriate learning approaches for imitation learning, model learning and reinforcement learning for robots with many degrees of freedom that perceive the manipulated objects using robot vision. Empirical evaluations on a several robot systems illustrate the effectiveness and applicability to learning control on an anthropomorphic robot arm. These robot motor skills range from basic visuo-motor skills to playing robot table tennis against a human being and manipulation of various objects.

This video may be embedded in other websites. You must copy the embeding code and paste it in the desired location in the HTML text of a Web page. Please always include the source and point it to lecture2go!

Links

Citation2Go

Social Media