09 k-means Clustering - Prof. Dr. Henning Lohmann - University of Hamburg
- Lecture2Go
- Catalog
- Sonstige Einrichtungen der UHH
- Hub of Computing and Data Science (HCDS)
- Datenwelten I: Einführung in Data Science
Catalog
1275 Views
09.12.2024
09 k-means Clustering
K-means clustering ist ein weitverbreitetes Verfahren des unsupervised learning. Es zielt auf die Frage „Welche Muster sind in meinen Daten verborgen?“ Neben dem partionierenden k-means Clustering wird ausblickend kurz auch auf hierarchische und dichtebasierte Verfahren eingegangen.
---
Die Vorlesung führt in informationstechnische und statistische Grundlagen der Data Science ein. Sie ist Teil eines zweisemestrigen Zyklus zu "Datenwelten". Im Sommersemester folgt eine zweite Vorlesung, die sich Datenethik, Datenrecht und erkenntnistheoretischen Reflektionen auf eine "verdatete" Welt befassen wird. Beide Vorlesungen werden von interdisziplinär zusammengesetzten Teams von Lehrenden gehalten, um unterschiedliche Perspektiven auf Data Science, unterschiedliche Fragestellungen und Problemsichten einzubringen und aufeinander zu beziehen. Studierende entwickeln dabei ein Grundverständnis folgender Inhalte: * Funktionsweise der informationstechnischen Systeme, die in weiten Teilen unseren Alltag (mit-)gestalten * Das technische und soziale Zusammenspiel dieser Systeme bei der Erhebung, Aufbewahrung und Nutzung von Daten * Einfache statistische Verfahren zur Datenanalyse * Verfahren aus dem Bereich des maschinellen Lernens (Classification, Regression, Clustering) * Elementare Einführung in Neuronale Netze und ihre Anwendungen in der Bild- und Sprachverarbeitung
---
Die Vorlesung führt in informationstechnische und statistische Grundlagen der Data Science ein. Sie ist Teil eines zweisemestrigen Zyklus zu "Datenwelten". Im Sommersemester folgt eine zweite Vorlesung, die sich Datenethik, Datenrecht und erkenntnistheoretischen Reflektionen auf eine "verdatete" Welt befassen wird. Beide Vorlesungen werden von interdisziplinär zusammengesetzten Teams von Lehrenden gehalten, um unterschiedliche Perspektiven auf Data Science, unterschiedliche Fragestellungen und Problemsichten einzubringen und aufeinander zu beziehen. Studierende entwickeln dabei ein Grundverständnis folgender Inhalte: * Funktionsweise der informationstechnischen Systeme, die in weiten Teilen unseren Alltag (mit-)gestalten * Das technische und soziale Zusammenspiel dieser Systeme bei der Erhebung, Aufbewahrung und Nutzung von Daten * Einfache statistische Verfahren zur Datenanalyse * Verfahren aus dem Bereich des maschinellen Lernens (Classification, Regression, Clustering) * Elementare Einführung in Neuronale Netze und ihre Anwendungen in der Bild- und Sprachverarbeitung
Technical support
Please click on the link bellow and then fill out the required fields to contact our Support Team!
RRZ Support Link